Chemistry
sarahs0698
32

A car with a mass of 1,200 kilograms is moving around a circular curve at a uniform velocity of 20 meters per second. The centripetal force on the car is 6,000 newtons. what is the radius of the curve?

+3
(1) Answers
tasha0408

The answer is 80 m. Centripetal force (F) is a force that makes body move around a circular curve. The unit of force is N (N = kg * m/s²). It can be represented as: [latex]F= \frac{m* v^{2} }{r} [/latex] where: m - mass v - velocity r - radius of the curve We have: m = 1,200 kg V = 20 m/s F = 6,000 N = 6,000 kg * m/s² We need radius of the curve: r = ? So, if [latex]F= \frac{m* v^{2} }{r} [/latex], then:     [latex]r= \frac{3* v^{2} }{F} [/latex] ⇒ [latex]r = \frac{1200 kg * (20m/s)^{2} }{6000 kg*m/s^{2} } [/latex] ⇒ [latex]r= \frac{1200*400*kg*m^{2}*s^{2} }{6000kg*m/s^{2} } [/latex] ⇒ [latex]r= \frac{480,000m}{6000} [/latex] ⇒ [latex]r=80m[/latex]

Add answer