A car with a mass of 1,200 kilograms is moving around a circular curve at a uniform velocity of 20 meters per second. The centripetal force on the car is 6,000 newtons. what is the radius of the curve?

(1) Answers

The answer is 80 m. Centripetal force (F) is a force that makes body move around a circular curve. The unit of force is N (N = kg * m/s²). It can be represented as: [latex]F= \frac{m* v^{2} }{r} [/latex] where: m - mass v - velocity r - radius of the curve We have: m = 1,200 kg V = 20 m/s F = 6,000 N = 6,000 kg * m/s² We need radius of the curve: r = ? So, if [latex]F= \frac{m* v^{2} }{r} [/latex], then:     [latex]r= \frac{3* v^{2} }{F} [/latex] ⇒ [latex]r = \frac{1200 kg * (20m/s)^{2} }{6000 kg*m/s^{2} } [/latex] ⇒ [latex]r= \frac{1200*400*kg*m^{2}*s^{2} }{6000kg*m/s^{2} } [/latex] ⇒ [latex]r= \frac{480,000m}{6000} [/latex] ⇒ [latex]r=80m[/latex]

Add answer