Mathematics
LizzieChwieroth
44

Simplify: [latex] \frac{72a^{5}b^{3} }{ 84a^{4} b^{2}} [/latex] A) [latex] \frac{2}{9}ab [/latex] B) [latex] \frac{2}{3} a^{2} b [/latex] C) [latex] \frac {2a^{2} }{3b} [/latex] D) [latex] \frac{6}{7} ab[/latex]

+4
(2) Answers
Derick280

Divide the whole numbers and subtract the exponents with the like bases. [latex]\sf\dfrac{72}{84}[/latex] Simplify: [latex]\sf\dfrac{6}{7}[/latex] [latex]\sf\dfrac{a^5}{a^4}\rightarrow~a^{5-4}\rightarrow~a^1\rightarrow~a[/latex] [latex]\sf\dfrac{b^3}{b^2}\rightarrow~b^{3-2}\rightarrow~b^1\rightarrow~b[/latex] So we have: [latex]\sf\dfrac{6}{7}ab[/latex]

queenelise7

First you find a number you can divide [latex] \frac{72}{84} [/latex] 12 is a common factor for both 72 and 84. 72÷12=6 84÷12= 7 so you answer would be D) [latex] \frac{6}{7}ab[/latex] Hope I helped!

Add answer